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H Y D R O D Y N A M I C S  O F  A V O R T E X  R I N G  

V. I. Korobko and I. V. Chekh UDC 538.517.4 

We considered the kinematics and dynamics of a vortex ring in an incompressible fluid in toroidal 

coordinates. We obtained the change in the pressure difference along the boundary between two flow regions 

in the case of a moving torus. 

Vortex rings, or vorticity, rank among the most important properties of liquid and gas that underlie 

diversified forms of their motion. The best example of the formation and development of vortex rings are coherent 

structures in turbulent flows that represent an expressed form of the concentration of vorticity rolled up into a torus 

[1 ]. Such a structure is stable, has a large lift force, and in motion over large distances preserves the momentum 

imparted to it [2 ]. 
Vortex rings form the hydrodynamic basis in a number of new technologies, including chemical industries 

[3, 4 ] and the cleaning of objects in machines under repair [5, 6 ]. The problem of the formation and development 

of rings was the concern of [7-15]. We note that in all of the works mentioned the solution of the problem is 

constructed in a cylindrical system of coordinates. The introduction of toroidal coordinates makes it possible to 

obtain certain new solutions along with the well-known ones. 

In the present work we consider the kinematics and dynamics of a vortex ring in toroidal coordinates (a, 

~, ~o) [16 ]. 
We obtained the solution of the problem concerning the development of a vortex ring in a homogeneous 

rectilinear fluid fl0w. 
Kinematics of a Vortex. We assume that a particle of the fluid of a vortex ring moves along the surface of 

the torus of the indicated coordinate system (a, r, ~o). Then, the streamline is characterized by the coordinate lines 

= const and ~o = const, whereas the components of the velocity vector V(V~r, VT, Vg) are respectively equal to 

vo=vo; v~= %=o. 

The centerline of the torus is the axis ~ = 0. This makes it possible to exclude from the continuity equation 

the variable ~o and the terms containing the derivative O/0~o. Then the mass conservation law in the case of an 

incompressible fluid has the form 

divV= -- -- 
1 0 

,fg Oct 

As a result of integration under the boundary conditions 

V a --, 0 when 

V a = V 0 = const 

we obtain an expression for the velocity 

r-- ,oo;  a - , 0 ,  z - , 0 ;  

w h e n  o ' =  _ + ~ ,  z - ~ 0  

V 0 (ch v - cos cO x (1) 
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In Cartesian coordinates x, y, z at x -- 0 we write expression (1) according to the transition formulas [161: 

VO a4 ~/(y2 + z 2 _ a2)2 + (2az)2 
v~ = (~ + 2 + 2)3 

In cylindrical coordinates z, y, ~o, where y2 = r 2 = x 2 + y2, according to the transition formulas U~ = 

Va cos a ,  Uy - - Va sin a ,  we have 

Voa4 (y2 _ z 2 _ a 2) (2) 

Uz = 0,2 + z 2 + a2)3 ' 

2 Voa4Yz 
Uy---- -- (y2 + z 2 -I- a2) 3 '  

or for the stream function ~o(Uy = - 1/y. (6qJo/6z); Uz = 1/y. (6qSo/6y)): 

t i t  0 = 
-- Voa4y 2 

2 (~ + ? + 2)2" 

(3) 

(4) 

Along the line y = 0 (i.e., the 0z axis) we find the circulation of velocity along the closed contour bounding 

the region ~ > y >__ 0, oo > z > -Qo from the formula 

r = -  ~ Uz dz. 
- - 0 0  

Substituting the expression for Uz from Eq. (2) at y --- 0 we obtain the value F -- Vona/2. Whence we 

determine the value of the velocity on the axis of symmetry at the center of the torus: 

2r (5) vo = ~a .  

Thus,  the velocity V 0 is directly proportional to the vortex intensity and inversely proportional to its radius. 

Dynamics of the Vortex Ring Developing in a Homogeneous Rectilinear Fluid Flow. We assume that the 

vortex ring moves in an incompressible fluid along the axis of symmetry 0z of the vortex with the velocity Ur162 The  

solution of this problem can be represented as a superposition of two potential flows: flow around a stationary 

annular  vortex by a fluid with a constant velocity U~, = V1 -- const and the motion of the fluid along the torus 

surface initiated by the vortex. According to the superposition principle [17 ], the fluid stream function in a moving 

vortex ring can be presented as follows: 

Here qJo has been determined according to formula (4). The stream function ~1 in a cylindrical coordinate system 

1 0 t I / 1  1 OW 1 
vy=  y o ~ '  V ~ - y  or 

of a homogeneous rectilinear potential flow (Uy = U~o -- 0, Uz = Uo~ = V 1 = const) is equal to 

2 
q/1 = VI~--" 

Finally, for the stream function q~ we have 

2 4 2  y %a y 
~ = ~ - - -  

2 2 (y2 + z 2 + a2)2 " 
(6) 
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Fig. 1. Variation of velocity Uz/Vo along the coordinate axes: a) along the 

z /a  axis; b) along the y/a  axis. 

Analysis of the Results Obtained. In Fig. 1 we present the results of calculation of the dependences of the 

velocity component Uz along the vortex axis 0z (Fig. la) and across it, i.e., on the 0y axis (Fig. lb) obtained from 

formula (2). From the figure it is seen that the maximum velocity corresponds to the center of the vortex ring (to 

the coordinate origin, point 0). In the remaining directions from the center, the velocity decreases asymptotically 

till zero. 

The streamlines of the vortex moving in a rectilinear flow with the velocity 1/1 -- nVo are depicted in Fig. 

2, where n = 0.09. The trajectories of fluid particles were calculated from formula (6). The streamline corresponding 

to the value �9 -- 0 splits into a straight line, which is the axis of symmetry of the torus (the 0z axis), and into a 

circle of radius 

a ldTZ-~_ ~z R=-~ 

obtained from formula (6), where k 4-- n. Thus, in addition to circulation about the vortex axis (point A), the fluid 

in the interior of this circle moves with the velocity VI in the direction opposite to the 0z axis. The axis of the 

vortex, i.e., the circle where V = 0, "has contracted" around the symmetry axis. In Fig. 1, 0A = 1, and in Fig. 2 

it is 0.787. 
As the velocity of the torus 1"1 increases, the radius R of the line W = 0 decreases, and at k --- 1 (i.e., at 1,'1 

= V0) it disappears (R = 0). This means that one will not observe a toroidal vortex as such. Thus, the value of the 

velocity of the torus in the fluid lies in the range 0 < V1 < V0, i.e., it depends on the initial circulation determined 

by Vo. 
We calculate the circulation along the boundary between two flow regions from the formula 

r = ~ Uodt + ~ uzaz, 
BCD DB 

where Uo is the velocity of the fluid at the BCD boundary in polar coordinates with the origin at the point 0. The 

result of calculations is 

F = VoRk 2 (2k 2 - 4k 4 + 1) + Voa arctan Vr~ - k--------~2 
k 

In the case of a stationary vortex ring, i.e., at k = 0, we obtain an expression 

F = V o ~ a / 2 ,  

which corresponds to (5). 
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Fig. 2. Distribution of streamlines u~/Voa2 in flow around a vortex ring: 1) 

�9 /Vo a2= 0.025; 2) O; 3) 0.025; 4) 0.1. 

Proceeding from the Bernoulli equation, we obtain a formula for the streamline to calculate the pressure 

z q 

Y 

Fig. 3. Change in the pressure difference ~ along the boundary as a function 

of 0, rad. 

difference along the line �9 = 0: 

pV~l - 1  

Just as in the case of calculation of the circulation F, it is convenient to represent the velocity U in polar 

coordinates (r, O) in the yOz plane. Then, the velocity components Ur and UO at r -- R will be written as 

U r=O, U O=2k4VO(1-k 2) cosO. 

The results of computations of ~ at the boundary between two flow regions are presented in Fig. 3. It is 
seen from the figure that the vortical region contracts along the symmetry axis and expands at the edges. Such a 

436 



distribution of pressures explains the expansion of the vortex ring in a transverse direction during the motion of 

the torus which is visually observed [18 ]. 

N O T A T I O N  

a, z-, T, toroidal coordinates;V (Vo; Vr; V~o), velocity of a fluid particle and its projections in toroidal 
coordinates; gaa, grr, g~o~o, metric tensor components; V~ = X/goagr,g~o~o, the Jacobian of transition to curvilinear 
coordinates; Vo, velocity at the center of a vortex ring on its symmetry axis; x, y, z, Cartesian coordinates; z, y, 
~o, cylindrical coordinates; a, distance from the axis of a torus (V = 0) to its axis of symmetry (0z); a, angle between 
the  0y axis and the line that connects a fluid particle on the streamline z- = const, which represents a circle [16 ], 

with the center of this circle; Uz, Uy, velocities in the cylindrical system of coordinates; ~o, stream function of a 

stationary vortex ring; F, velocity circulation; Uoo = V1, velocity of a rectilinear flow at infinity; tIJ1, stream function 

of a rectilinear flow; qJ = tI/o + tIJl, superposition of two flows; n = k 4 = V 1 / V  O, velocity ratio coefficient; R, radius 
of a vortical region; UO, velocity of fluid particles at the boundary in polar coordinates (r, 0) with the center at the 

coordinate origin (point 0); p, fluid density; P0, P, pressure at infinity and at a certain point of flow; ~, pressure 

difference. 
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